UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Polarity proteins and Rho GTPases cooperate to spatially organise epithelial actin-based protrusions.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Georgiou M, Baum B
  • Publication date:
    01/04/2010
  • Pagination:
    1089, 1098
  • Journal:
    J Cell Sci
  • Volume:
    123
  • Issue:
    Pt 7
  • Country:
    England
  • PII:
    jcs.060772
  • Language:
    eng
  • Keywords:
    Actin Cytoskeleton, Animals, Cell Cycle Proteins, Cell Polarity, Cell Surface Extensions, Cells, Cultured, Cloning, Molecular, Drosophila, Epithelial Cells, Membrane Proteins, Mutant Proteins, Protein Binding, Signal Transduction, rho GTP-Binding Proteins
Abstract
Different actin-filament-based structures co-exist in many cells. Here, we characterise dynamic actin-based protrusions that form at distinct positions within columnar epithelial cells, focusing on basal filopodia and sheet-like intermediate-level protrusions that extend between surrounding epithelial cells. Using a genetic analysis, we found that the form and distribution of these actin-filament-based structures depends on the activities of apical polarity determinants, not on basal integrin signalling. Bazooka/Par3 acts upstream of the RacGEF Sif/TIAM1 to limit filopodia to the basal domain, whereas Cdc42, aPKC and Par6 are required for normal protrusion morphology and dynamics. Downstream of these polarity regulators, Sif/TIAM1, Rac, SCAR and Arp2/3 complexes catalyse actin nucleation to generate lamellipodia and filopodia, whose form depends on the level of Rac activation. Taken together, these data reveal a role for Baz/Par3 in the establishment of an intercellular gradient of Rac inhibition, from apical to basal, and an intimate association between different apically concentrated Par proteins and Rho-family GTPases in the regulation of the distribution and structure of the polarised epithelial actin cytoskeleton.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
MRC/UCL Lab for Molecular Cell Bio
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by