Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
SCAR/WAVE is activated at mitosis and drives myosin-independent cytokinesis.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    King JS, Veltman DM, Georgiou M, Baum B, Insall RH
  • Publication date:
  • Pagination:
    2246, 2255
  • Journal:
    J Cell Sci
  • Volume:
  • Issue:
    Pt 13
  • Status:
  • Country:
  • PII:
  • Language:
  • Keywords:
    Animals, Cell Movement, Cytokinesis, Dictyostelium, Microtubule-Associated Proteins, Mitosis, Myosins, Protein Subunits, Protozoan Proteins, Recombinant Fusion Proteins, Signal Transduction, Spindle Apparatus
Cell division requires the tight coordination of multiple cytoskeletal pathways. The best understood of these involves myosin-II-dependent constriction around the cell equator, but both Dictyostelium and mammalian cells also use a parallel, adhesion-dependent mechanism to generate furrows. We show that the actin nucleation factor SCAR/WAVE is strongly activated during Dictyostelium cytokinesis. This activation localises to large polar protrusions, driving separation of the daughter cells. This continues for 10 minutes after division before the daughter cells revert to normal random motility, indicating that this is a tightly regulated process. We demonstrate that SCAR activity is essential to drive myosin-II-independent cytokinesis, and stabilises the furrow, ensuring symmetrical division. SCAR is also responsible for the generation of MiDASes, mitosis-specific actin-rich adhesions. Loss of SCAR in both Dictyostelium and Drosophila leads to a similar mitotic phenotype, with severe mitotic blebbing, indicating conserved functionality. We also find that the microtubule end-binding protein EB1 is required to restrict SCAR localisation and direct migration. EB1-null cells also exhibit decreased adhesion during mitosis. Our data reveal a spindle-directed signalling pathway that regulates SCAR activity, migration and adhesion at mitosis.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
MRC/UCL Lab for Molecular Cell Bio
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by