UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Natural image profiles are most likely to be step edges
Abstract
We introduce Geometric Texton Theory (GTT), a theory of categorical visual feature classification that arises through consideration of the metamerism that affects families of co-localised linear receptive-field operators. A refinement of GTT that uses maximum likelihood (ML) to resolve this metamerism is presented. We describe a method for discovering the ML element of a metamery class by analysing a database of natural images. We apply the method to the simplest case––the ML element of a canonical metamery class defined by co-registering the location and orientation of profiles from images, and affinely scaling their intensities so that they have identical responses to 1-D, zeroth- and first-order, derivative of Gaussian operators. We find that a step edge is the ML profile. This result is consistent with our proposed theory of feature classification.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by