Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
An ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Novak MJU, Sweeney MG, Li A, Treacy C, Chandrashekar HS, Giunti P, Goold RG, Davis MB, Houlden H, Tabrizi SJ
  • Publication date:
  • Pagination:
    2176, 2182
  • Journal:
    Mov Disord
  • Volume:
  • Issue:
  • Status:
  • Country:
    United States
  • Language:
  • Keywords:
    Adult, Family Health, Female, Gene Deletion, Genetic Testing, Humans, Inositol 1,4,5-Trisphosphate Receptors, Magnetic Resonance Imaging, Male, Middle Aged, Polymorphism, Single Nucleotide, Spinocerebellar Ataxias
The purpose of this study was to characterise a novel family with very slowly progressive pure spinocerebellar ataxia (SCA) caused by a deletion in the inositol 1,4,5-triphosphate receptor 1 (ITPR1) gene on chromosome 3. This is a detailed clinical, genetic, and radiological description of the genotype. Deletions in ITPR1 have been shown to cause SCA15/SCA16 in six families to date. A further Japanese family has been identified with an ITPR1 point mutation. The exact prevalence is as yet unknown, but is probably higher than previously thought. The clinical phenotype of the family is described, and videotaped clinical examinations are presented. Serial brain magnetic resonance imaging studies were carried out on one affected individual, and genetic analysis was performed on several family members. Protein analysis confirmed the ITPR1 deletion. Affected subjects display a remarkably slow, almost pure cerebellar syndrome. Serial magnetic resonance imaging shows moderate cerebellar atrophy with mild inferior parietal and temporal cortical volume loss. Genetic analysis shows a deletion of 346,487 bp in ITPR1 (the second largest ITPR1 deletion reported to date), suggesting SCA15 is due to a loss of ITPR1 function. Western blotting of lymphoblastoid cell line protein confirms reduced ITPR1 protein levels. SCA15 is a slowly or nonprogressive pure cerebellar ataxia, which appears to be caused by a loss of ITPR1 function and a reduction in the translated protein. Patients with nonprogressive or slowly progressive ataxia should be screened for ITPR1 defects.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Clinical and Movement Neurosciences
Neurodegenerative Diseases
Department of Neuromuscular Diseases
Institute of Ophthalmology
Neurodegenerative Diseases
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by