UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A role for Rab10 in von Willebrand factor release discovered by an AP-1 interactor screen in C. elegans.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Michaux G, Dyer CE, Nightingale TD, Gallaud E, Nurrish S, Cutler DF
  • Publication date:
    02/2011
  • Pagination:
    392, 401
  • Journal:
    J Thromb Haemost
  • Volume:
    9
  • Issue:
    2
  • Status:
    Published
  • Country:
    England
  • Language:
    ENG
  • Keywords:
    Animals, Caenorhabditis elegans, Cell Line, Endothelium, Vascular, Humans, Polymerase Chain Reaction, RNA Interference, Transcription Factor AP-1, rab GTP-Binding Proteins, von Willebrand Factor
Abstract
BACKGROUND: Endothelial von Willebrand factor (VWF) mediates platelet adhesion and acts as a protective chaperone to clotting factor VIII. Rapid release of highly multimerized VWF is particularly effective in promoting hemostasis. To produce this protein, an elaborate biogenesis is required, culminating at the trans-Golgi network (TGN) in storage within secretory granules called Weibel-Palade bodies (WPB). Failure to correctly form these organelles can lead to uncontrolled secretion of low-molecular-weight multimers of VWF. The TGN-associated adaptor AP-1 and its interactors clathrin, aftiphilin and γ-synergin are essential to initial WPB formation at the Golgi apparatus, and thus to VWF storage and secretion. OBJECTIVES: To identify new proteins implicated in VWF storage and/or secretion. METHODS: A genomewide RNA interference (RNAi) screen was performed in the Nematode C. elegans to identify new AP-1 genetic interactors. RESULTS: The small GTPase Rab10 was found to genetically interact with a partial loss of function of AP-1 in C. elegans. We investigated Rab10 in human primary umbilical vein endothelial cells (HUVECs). We report that Rab10 is enriched at the Golgi apparatus, where WPB are formed, and that in cells where Rab10 expression has been suppressed by siRNA, VWF secretion is altered: the amount of rapidly released VWF was significantly reduced. We also found that Rab8A has a similar function. CONCLUSION: Rab10 and Rab8A are new cytoplasmic factors implicated in WPB biogenesis that play a role in generating granules that can rapidly respond to secretagogue.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
MRC/UCL Lab for Molecular Cell Bio
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by