UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
DNA strands attached inside single conical nanopores: ionic pore characteristics and insight into DNA biophysics
Abstract
Single nanopores attract a great deal of scientific interest as a basis for biosensors and as a system to study the interactions and behavior of molecules in a confined volume. Tuning the geometry and surface chemistry of nanopores helps create devices that control transport of ions and molecules in solution. Here, we present single conically shaped nanopores whose narrow opening of 8 or 12 nm is modified with single-stranded DNA molecules. We find that the DNA occludes the narrow opening of nanopores and that the blockade extent decreases with the ionic strength of the background electrolyte. The results are explained by the ionic strength dependence of the persistence length of DNA. At low KCl concentrations (10 mM) the molecules assume an extended and rigid conformation, thereby blocking the pore lumen and reducing the flow of ionic current to a greater extent than compacted DNA at high salt concentrations. Attaching flexible polymers to the pore walls hence creates a system with tunable opening diameters in order to regulate transport of both neutral and charged species.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by