UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
First-principles study of the stability of calcium-decorated carbon nanostructures
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Cazorla C, Shevlin SA, Guo ZX
  • Publisher:
    AMER PHYSICAL SOC
  • Publication date:
    28/10/2010
  • Journal:
    PHYS REV B
  • Volume:
    82
  • Issue:
    15
  • Print ISSN:
    1098-0121
  • Language:
    EN
  • Keywords:
    DENSITY-FUNCTIONAL THEORY, CATION-PI INTERACTIONS, AUGMENTED-WAVE METHOD, MINIMUM ENERGY PATHS, ELASTIC BAND METHOD, HYDROGEN STORAGE, SADDLE-POINTS, AMINO-ACIDS, AB-INITIO, NANOTUBES
  • Addresses:
    Cazorla, C
    UCL
    Dept Chem
    London
    WC1H 0AH
    England

    London Ctr Theory & Simulat Mat
    London
    WC1E 6BT
    England
Abstract
In view of the interest in calcium-decorated carbon nanostructures motivated by potential biotechnological and nanotechnological applications, we have carried out a systematic and thorough first-principles computational study of the energetic and structural properties of these systems. We use density-functional theory (DFT) and ab initio molecular dynamic simulations to determine minimum energy configurations, binding energy profiles and the thermodynamic stability of Ca-decorated graphene and carbon nanotubes (CNT) as function of doping concentration. In graphene, we predict the existence of an equilibrium (root 3 x root 3) R30 degrees commensurate CaC6 monolayer that remains stable without clustering at low and room temperatures. For carbon nanotubes, we demonstrate that uniformly Ca-decorated zigzag (n <= 10, 0)CNT become stable against clustering at moderately large doping concentrations while Ca-coated armchair (n, n) CNT exhibit a clear thermodynamic tendency for Ca aggregation. In both Ca-doped graphene and CNT systems, we estimate large energy barriers (similar to 1 eV) for atomic aggregation processes, which indicates that Ca clustering in carbon nanosurfaces may be kinematically hindered. Finally, we demonstrate via comparison of DFT and Moller-Plesset second-order perturbation calculations that DFT underestimates significantly the weak interaction between a Ca dopant and a coronene molecule, and also that the Ca-coronene system is not physically comparable to Ca-doped graphene due to lack of electronic pi-d orbitals hybridization near the Fermi energy level.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
Dept of Chemistry
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by