UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
First-principles study of the stability of calcium-decorated carbon nanostructures
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Cazorla C, Shevlin SA, Guo ZX
  • Publisher:
    AMER PHYSICAL SOC
  • Publication date:
    28/10/2010
  • Journal:
    PHYS REV B
  • Volume:
    82
  • Issue:
    15
  • Article number:
    155454
  • Print ISSN:
    1098-0121
  • Language:
    EN
  • Keywords:
    DENSITY-FUNCTIONAL THEORY, CATION-PI INTERACTIONS, AUGMENTED-WAVE METHOD, MINIMUM ENERGY PATHS, ELASTIC BAND METHOD, HYDROGEN STORAGE, SADDLE-POINTS, AMINO-ACIDS, AB-INITIO, NANOTUBES
  • Addresses:
    Cazorla, C
    UCL
    Dept Chem
    London
    WC1H 0AH
    England

    London Ctr Theory & Simulat Mat
    London
    WC1E 6BT
    England
Abstract
In view of the interest in calcium-decorated carbon nanostructures motivated by potential biotechnological and nanotechnological applications, we have carried out a systematic and thorough first-principles computational study of the energetic and structural properties of these systems. We use density-functional theory (DFT) and ab initio molecular dynamic simulations to determine minimum energy configurations, binding energy profiles and the thermodynamic stability of Ca-decorated graphene and carbon nanotubes (CNT) as function of doping concentration. In graphene, we predict the existence of an equilibrium (root 3 x root 3) R30 degrees commensurate CaC6 monolayer that remains stable without clustering at low and room temperatures. For carbon nanotubes, we demonstrate that uniformly Ca-decorated zigzag (n <= 10, 0)CNT become stable against clustering at moderately large doping concentrations while Ca-coated armchair (n, n) CNT exhibit a clear thermodynamic tendency for Ca aggregation. In both Ca-doped graphene and CNT systems, we estimate large energy barriers (similar to 1 eV) for atomic aggregation processes, which indicates that Ca clustering in carbon nanosurfaces may be kinematically hindered. Finally, we demonstrate via comparison of DFT and Moller-Plesset second-order perturbation calculations that DFT underestimates significantly the weak interaction between a Ca dopant and a coronene molecule, and also that the Ca-coronene system is not physically comparable to Ca-doped graphene due to lack of electronic pi-d orbitals hybridization near the Fermi energy level.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Chemistry
Author
Dept of Chemistry
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by