UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovasz theta function
Abstract
We study the quantum channel version of Shannon's zero-error capacity problem. Motivated by recent progress on this question, we propose to consider a certain operator space as the quantum generalisation of the adjacency matrix, in terms of which the plain, quantum and entanglement-assisted capacity can be formulated, and for which we show some new basic properties. Most importantly, we define a quantum version of Lovasz' famous theta function, as the norm-completion (or stabilisation) of a "naive" generalisation of theta. We go on to show that this function upper bounds the number of entanglement-assisted zero-error messages, that it is given by a semidefinite programme, whose dual we write down explicitly, and that it is multiplicative with respect to the natural (strong) graph product. We explore various other properties of the new quantity, which reduces to Lovasz' original theta in the classical case, give several applications, and propose to study the operator spaces associated to channels as "non-commutative graphs", using the language of Hilbert modules.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by