Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Changes in NAD(P)H fluorescence and membrane current produced by glutamate uptake into salamander Müller cells.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Barbour B, Magnus C, Szatkowski M, Gray PT, Attwell D
  • Publication date:
  • Pagination:
    573, 597
  • Journal:
    J Physiol
  • Volume:
  • Status:
  • Country:
  • Print ISSN:
  • Language:
  • Keywords:
    Action Potentials, Ambystoma, Animals, Biological Transport, Active, Fluorescence, Glutamates, Glutamic Acid, In Vitro Techniques, Intracellular Fluid, Membrane Potentials, Models, Biological, NADP, Neuroglia, Potassium, Retina, Sodium
1. Glutamate uptake into isolated, whole-cell patch-clamped glial cells was studied by monitoring the increase of cell fluorescence generated as glutamate and NAD(P) were converted into alpha-ketoglutarate and NAD(P)H by glutamate dehydrogenase. The current generated by the glutamate uptake carrier was recorded simultaneously. 2. L-Glutamate evoked an increase of cell fluorescence and an inward uptake current. L- and D-aspartate generated an uptake current but no fluorescence response, consistent with the amino acid specificity of glutamate dehydrogenase. 3. In the absence of external sodium the glutamate-evoked fluorescence response and uptake current were abolished, showing that there is no sodium-independent glutamate uptake across the cell membrane. 4. Varying the glutamate concentration altered both the fluorescence response and the uptake current. The fluorescence response saturated at a lower glutamate concentration than the uptake current, and depended in a Michaelis-Menten fashion on the uptake current. 5. The fluorescence response and the uptake current were reduced by membrane depolarization, and also by removal of intracellular potassium. 6. The dependence of the fluorescence response on uptake current when membrane potential was altered or intracellular potassium was removed was the same as that seen when the external glutamate concentration was altered. 7. These fluorescence studies show that glutamate uptake is inhibited by depolarization and by removal of intracellular potassium, consistent with the conclusion of earlier work in which uptake was monitored solely as a membrane current. The data are consistent with high-affinity electrogenic sodium- and potassium-dependent glutamate uptake with fixed stoichiometry being the only significant influx route for glutamate. Other possible interpretations of the data are also discussed.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Neuro, Physiology & Pharmacology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by