UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Robinson I, Tung LD, Maenosono S, Walti C, Thanh NTK
  • Publisher:
    ROYAL SOC CHEMISTRY
  • Publication date:
    11/2010
  • Pagination:
    2624, 2630
  • Journal:
    NANOSCALE
  • Volume:
    2
  • Issue:
    12
  • Status:
    Published
  • Print ISSN:
    2040-3364
  • Language:
    EN
  • Keywords:
    IRON-OXIDE NANOPARTICLES, COBALT NANOPARTICLES, SURFACE MODIFICATION, LIGAND-EXCHANGE, WATER, NANOCRYSTALS, NANOCOMPOSITES, PARTICLES, MAGHEMITE, CARBONYL
Abstract
Core-shell magnetic nanoparticles have received significant attention recently and are actively investigated owing to their large potential for a variety of applications. Here, the synthesis and characterization of bimetallic nanoparticles containing a magnetic core and a gold shell are discussed. The gold shell facilitates, for example, the conjugation of thiolated biological molecules to the surface of the nanoparticles. The composite nanoparticles were produced by the reduction of a gold salt on the surface of pre-formed cobalt or magnetite nanoparticles. The synthesized nanoparticles were characterized using ultraviolet-visible absorption spectroscopy, transmission electron microscopy, energy dispersion X-ray spectroscopy, X-ray diffraction and super-conducting quantum interference device magnetometry. The spectrographic data revealed the simultaneous presence of cobalt and gold in 5.6 +/- 0.8 nm alloy nanoparticles, and demonstrated the presence of distinct magnetite and gold phases in 9.2 +/- 1.3 nm core-shell magnetic nanoparticles. The cobalt-gold nanoparticles were of similar size to the cobalt seed, while the magnetite-gold nanoparticles were significantly larger than the magnetic seeds, indicating that different processes are responsible for the addition of the gold shell. The effect on the magnetic properties by adding a layer of gold to the cobalt and magnetite nanoparticles was studied. The functionalization of the magnetic nanoparticles is demonstrated through the conjugation of thiolated DNA to the gold shell.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Physics & Astronomy
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by