UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The matrix formalism for generalised gradients with time-varying orientation in diffusion NMR.
Abstract
The matrix formalism is a general framework for evaluating the diffusion NMR signal from restricted spins under generalised gradient waveforms. The original publications demonstrate the method for waveforms that vary only in magnitude and have fixed orientation. In this work, we extend the method to allow for variations in the direction of the gradient. This extension is necessary, for example to incorporate the effects of crusher gradients or imaging gradients in diffusion MRI, to characterise signal anisotropy in double pulsed field gradient (dPFG) experiments, or to optimise the gradient waveform for microstructure sensitivity. In particular, we show for primitive geometries (planes, cylinders and spheres), how to express the matrix operators at each time point of the gradient waveform as a linear combination of one or two fundamental matrices. Thus we obtain an efficient implementation with both the storage and CPU demands similar to the fixed-orientation case. Comparison with Monte Carlo simulations validates the implementation on three different sequences: dPFG, helical waveforms and the stimulated echo (STEAM) sequence.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
Author
Dept of Computer Science
Author
ICH Developmental Neurosciences Prog
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by