UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Sensitivity and selectivity of neurons in auditory cortex to the pitch, timbre, and location of sounds.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Bizley JK, Walker KMM
  • Publication date:
    08/2010
  • Pagination:
    453, 469
  • Journal:
    Neuroscientist
  • Volume:
    16
  • Issue:
    4
  • Status:
    Published
  • Country:
    United States
  • PII:
    1073858410371009
  • Language:
    eng
  • Keywords:
    Acoustic Stimulation, Animals, Auditory Cortex, Auditory Pathways, Evoked Potentials, Auditory, Neurons, Pitch Perception, Sound Localization
Abstract
We are able to rapidly recognize and localize the many sounds in our environment. We can describe any of these sounds in terms of various independent "features" such as their loudness, pitch, or position in space. However, we still know surprisingly little about how neurons in the auditory brain, specifically the auditory cortex, might form representations of these perceptual characteristics from the information that the ear provides about sound acoustics. In this article, the authors examine evidence that the auditory cortex is necessary for processing the pitch, timbre, and location of sounds, and document how neurons across multiple auditory cortical fields might represent these as trains of action potentials. They conclude by asking whether neurons in different regions of the auditory cortex might not be simply sensitive to each of these three sound features but whether they might be selective for one of them. The few studies that have examined neural sensitivity to multiple sound attributes provide only limited support for neural selectivity within auditory cortex. Providing an explanation of the neural basis of feature invariance is thus one of the major challenges to sensory neuroscience obtaining the ultimate goal of understanding how neural firing patterns in the brain give rise to perception.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
The Ear Institute
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by