Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Neural ensemble codes for stimulus periodicity in auditory cortex.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Comparative Study
  • Authors:
    Bizley JK, Walker KMM, King AJ, Schnupp JWH
  • Publication date:
  • Pagination:
    5078, 5091
  • Journal:
    J Neurosci
  • Volume:
  • Issue:
  • Status:
  • Country:
    United States
  • PII:
  • Language:
  • Keywords:
    Acoustic Stimulation, Action Potentials, Animals, Auditory Cortex, Auditory Pathways, Ferrets, Neurons, Periodicity
We measured the responses of neurons in auditory cortex of male and female ferrets to artificial vowels of varying fundamental frequency (f(0)), or periodicity, and compared these with the performance of animals trained to discriminate the periodicity of these sounds. Sensitivity to f(0) was found in all five auditory cortical fields examined, with most of those neurons exhibiting either low-pass or high-pass response functions. Only rarely was the stimulus dependence of individual neuron discharges sufficient to account for the discrimination performance of the ferrets. In contrast, when analyzed with a simple classifier, responses of small ensembles, comprising 3-61 simultaneously recorded neurons, often discriminated periodicity changes as well as the animals did. We examined four potential strategies for decoding ensemble responses: spike counts, relative first-spike latencies, a binary "spike or no-spike" code, and a spike-order code. All four codes represented stimulus periodicity effectively, and, surprisingly, the spike count and relative latency codes enabled an equally rapid readout, within 75 ms of stimulus onset. Thus, relative latency codes do not necessarily facilitate faster discrimination judgments. A joint spike count plus relative latency code was more informative than either code alone, indicating that the information captured by each measure was not wholly redundant. The responses of neural ensembles, but not of single neurons, reliably encoded f(0) changes even when stimulus intensity was varied randomly over a 20 dB range. Because trained animals can discriminate stimulus periodicity across different sound levels, this implies that ensemble codes are better suited to account for behavioral performance.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
The Ear Institute
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by