UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Adaptive motion processing in bilateral vestibular failure.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Kalla R, Muggleton N, Spiegel R, Bueti D, Claassen J, Walsh V, Bronstein A
  • Publication date:
    11/2011
  • Pagination:
    1212, 1216
  • Journal:
    J Neurol Neurosurg Psychiatry
  • Volume:
    82
  • Issue:
    11
  • Status:
    Published
  • Country:
    England
  • PII:
    jnnp.2010.235960
  • Language:
    eng
  • Keywords:
    Aged, Case-Control Studies, Female, Head Movements, Humans, Male, Middle Aged, Motion, Motion Perception, Movement, Perceptual Disorders, Software, Vestibular Diseases
Abstract
BACKGROUND: Patients with bilateral vestibular failure (BVF) suffer from oscillopsia during head movements. This is secondary to the loss of the vestibulo-ocular reflex which is responsible for stabilising retinal images during head movements of high frequency or velocity. Previous studies documented decreased visual motion sensitivity in such patients at low velocities. The authors now examine motion coherence tasks, which have two advantages: (1) the task is associated with the functions of the middle temporal area; and (2) it affords testing at low and high motion velocities, as relevant for patients with oscillopsia due to BVF. METHODS: Nine BVF patients and nine healthy control subjects were examined with a random dot pattern with variable percentages of dots moving in the target direction. Participants were asked to indicate in which of two possible directions they perceived the coherent motion. Horizontal and vertical planes were tested at speeds from 0.156 to 40°/s. RESULTS: Motion coherence thresholds were lower at higher speeds in both groups (p<0.0001). BVF patients had raised motion coherence thresholds (p=0.002) across all velocities as compared with the control subject group. CONCLUSION: In a motion coherence paradigm, BVF patients show raised thresholds. This is the first demonstration of diminished visual motion processing at high velocities, supporting the view that the changes allow BVF patients to partly compensate for the oscillopsia. The findings are interpreted as an adaptive process likely to involve the middle temporal visual motion processing areas.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Institute of Cognitive Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by