Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Specialization in the human brain: The case of numbers
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Kadosh RC, Bahrami B, Walsh V, Butterworth B, Popescu T, Price CJ
  • Publication date:
  • Journal:
    Frontiers in Human Neuroscience
  • Issue:
  • Status:
  • Print ISSN:
How numerical representation is encoded in the adult human brain is important for a basic understanding of human brain organization, its typical and atypical development, its evolutionary precursors, cognitive architectures, education, and rehabilitation. Previous studies have shown that numerical processing activates the same intraparietal regions irrespective of the presentation format (e.g., symbolic digits or non-symbolic dot arrays). This has led to claims that there is a single format-independent, numerical representation. In the current study we used a functional magnetic resonance adaptation paradigm, and effective connectivity analysis to re-examine whether numerical processing in the intraparietal sulci is dependent or independent on the format of the stimuli. We obtained two novel results. First, the whole brain analysis revealed that format change (e.g., from dots to digits), in the absence of a change in magnitude, activated the same intraparietal regions as magnitude change, but to a greater degree. Second, using dynamic causal modeling as a tool to disentangle neuronal specialization across regions that are commonly activated, we found that the connectivity between the left and right intraparietal sulci is format-dependent. Together, this line of results supports the idea that numerical representation is subserved by multiple mechanisms within the same parietal regions. © 2011 Cohen Kadosh, Bahrami, Walsh, Butterworth, Popescu and Price.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Institute of Cognitive Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by