Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Non-parametric regression for space–time forecasting under missing data
As more and more real time spatio-temporal datasets become available at increasing spatial and temporal resolutions, the provision of high quality, predictive information about spatio-temporal processes becomes an increasingly feasible goal. However, many sensor networks that collect spatio-temporal information are prone to failure, resulting in missing data. To complicate matters, the missing data is often not missing at random, and is characterised by long periods where no data is observed. The performance of traditional univariate forecasting methods such as ARIMA models decreases with the length of the missing data period because they do not have access to local temporal information. However, if spatio-temporal autocorrelation is present in a space–time series then spatio-temporal approaches have the potential to offer better forecasts. In this paper, a non-parametric spatio-temporal kernel regression model is developed to forecast the future unit journey time values of road links in central London, UK, under the assumption of sensor malfunction. Only the current traffic patterns of the upstream and downstream neighbouring links are used to inform the forecasts. The model performance is compared with another form of non-parametric regression, K-nearest neighbours, which is also effective in forecasting under missing data. The methods show promising forecasting performance, particularly in periods of high congestion.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Civil, Environ &Geomatic Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by