UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Longitudinal cortical thickness estimation using Khalimsky's cubic complex.
  • Publication Type:
    Conference
  • Authors:
    Cardoso MJ, Clarkson MJ, Modat M, Ourselin S
  • Publication date:
    2011
  • Pagination:
    467, 475
  • Published proceedings:
    Med Image Comput Comput Assist Interv
  • Volume:
    14
  • Issue:
    Pt 2
  • Status:
    Published
  • Conference place:
    Germany
  • Language:
    eng
  • Keywords:
    Algorithms, Brain, Brain Mapping, Cerebral Cortex, Computer Simulation, Humans, Image Processing, Computer-Assisted, Imaging, Three-Dimensional, Magnetic Resonance Imaging, Models, Statistical, Phantoms, Imaging, Probability, Reproducibility of Results, Software
Abstract
Longitudinal measurements of cortical thickness is a current hot topic in medical imaging research. Measuring the thickness of the cortex through time is normally hindered by the presence of noise, partial volume (PV) effects and topological defects, but mainly by the lack of a common directionality in the measurement to ensure consistency. In this paper, we propose a 4D pipeline (3D + time) using the Khalimsky cubic complex for the extraction of a topologically correct Laplacian field in an unbiased temporal group-wise space. The thickness at each time point is then obtained by integrating the probabilistic segmentation (transformed to the group-wise space) modulated by the Jacobian determinant of its deformation field through the group-wise Laplacian field. Experiments performed on digital phantoms show that the proposed method improves the time consistency of the thickness measurements with a statistically significant increase in accuracy when compared to two well established 3D techniques and a 3D version of the same method. Furthermore, quantitative analysis on brain MRI data showed that the proposed algorithm is able to retrieve increasingly significant time consistent consistent group differences between the cortical thickness of AD patients and controls.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers Show More
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by