UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Androgens affect myogenesis in vitro and increase local IGF-1 expression.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Sculthorpe N, Solomon AM, Sinanan AC, Bouloux PM, Grace F, Lewis MP
  • Publication date:
    04/2012
  • Pagination:
    610, 615
  • Journal:
    Med Sci Sports Exerc
  • Volume:
    44
  • Issue:
    4
  • Status:
    Published
  • Country:
    United States
  • Language:
    eng
  • Keywords:
    Adolescent, Adult, Androgen Receptor Antagonists, Cells, Cultured, Flutamide, Humans, Insulin-Like Growth Factor I, Male, Muscle Development, Muscle, Skeletal, Receptors, Androgen, Testosterone, Young Adult
Abstract
PURPOSE: The mechanism whereby anabolic androgens are associated with hypertrophy of skeletal muscle is incompletely understood but may involve an interaction with locally generated insulin-like growth factor (IGF) 1. The present investigation utilized a cell culture model of human skeletal muscle-derived cell maturation to test the hypothesis that androgens increase differentiation of human muscle precursor cells in vitro and to assess effects of androgen with or without IGF-1 on IGF-1 messenger RNA (mRNA) expression in human muscle precursor cells. METHODS: Differentiation of muscle-derived cells was induced under standard low-serum conditions. Cultures were then exposed to androgen (testosterone (T)) at 50, 100, and 500 nM or IGF-1 (10-50 ng·mL⁻¹). Immunocytochemistry and real-time polymerase chain reaction (RT-PCR) were used to assess effects of androgens and IGF-1 after 3- (early) or 7-d (late) muscle differentiation, respectively; RT-PCR was used to quantify the effects on androgen receptor expression. RESULTS: Under low-serum conditions, 3-d exposure to androgens or IGF-1 or both resulted in no significant increase in cellular myogenic commitment. After 7-d exposure, however, T and IGF-1 were both found to increase fusion index with no observable synergistic effect. T also increased IGF-1 mRNA generation (P < 0.0001), whereas exogenous IGF-1 (P < 0.001) reduced IGF-1 mRNA transcription relative to control. The T effect was reversible after treatment with flutamide, an androgen receptor antagonist. CONCLUSIONS: Both T and IGF-1 increase myogenic commitment after 7-d exposure to a differentiation medium. With T causing a concomitant increase in IGF-1 mRNA underpinning IGF-1 as a central mediator in the cellular pathways associated with muscle hypertrophy, including those affected by androgens. The novel system described has the potential for elucidating the pattern of growth factor effects associated with androgens in skeletal muscle.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by