UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A Generative Model of Speech Production in Broca's and Wernicke's Areas.
Abstract
Speech production involves the generation of an auditory signal from the articulators and vocal tract. When the intended auditory signal does not match the produced sounds, subsequent articulatory commands can be adjusted to reduce the difference between the intended and produced sounds. This requires an internal model of the intended speech output that can be compared to the produced speech. The aim of this functional imaging study was to identify brain activation related to the internal model of speech production after activation related to vocalization, auditory feedback, and movement in the articulators had been controlled. There were four conditions: silent articulation of speech, non-speech mouth movements, finger tapping, and visual fixation. In the speech conditions, participants produced the mouth movements associated with the words "one" and "three." We eliminated auditory feedback from the spoken output by instructing participants to articulate these words without producing any sound. The non-speech mouth movement conditions involved lip pursing and tongue protrusions to control for movement in the articulators. The main difference between our speech and non-speech mouth movement conditions is that prior experience producing speech sounds leads to the automatic and covert generation of auditory and phonological associations that may play a role in predicting auditory feedback. We found that, relative to non-speech mouth movements, silent speech activated Broca's area in the left dorsal pars opercularis and Wernicke's area in the left posterior superior temporal sulcus. We discuss these results in the context of a generative model of speech production and propose that Broca's and Wernicke's areas may be involved in predicting the speech output that follows articulation. These predictions could provide a mechanism by which rapid movement of the articulators is precisely matched to the intended speech outputs during future articulations.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Institute of Cognitive Neuroscience
Author
Institute of Cognitive Neuroscience
Author
Imaging Neuroscience
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by