Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Why Ants are Hard
  • Publication Type:
  • Authors:
    Langdon WB, Poli R
  • publication date:
  • Report number:
  • Notes:
    Presented at GP-98 keywords: genetic algorithms, genetic programming file: /1998/CSRP-98-04.ps.gz notes: See also \citelangdon:1998:antspace
The problem of programming an artificial ant to follow the Santa Fe trail is used as an example program search space. Analysis of shorter solutions shows they have many of the characteristics often ascribed to manually coded programs. Enumeration of a small fraction of the total search space and random sampling characterise it as rugged with many multiple plateaus split by deep valleys and many local and global optima. This suggests it is difficult for hill climbing algorithms. Analysis of the program search space in terms of fixed length schema suggests it is highly deceptive and that for the simplest solutions large building blocks must be assembled before they have above average fitness. In some cases we show solutions cannot be assembled using a fixed representation from small building blocks of above average fitness. These suggest the Ant problem is difficult for Genetic Algorithms. Random sampling of the program search space suggests on average the density of global optima changes only slowly with program size but the density of neutral networks linking points of the same fitness grows approximately linearly with program length. This is part of the cause of bloat. Previously reported genetic programming, simulated annealing and hill climbing performance is shown not to be much better than random search on the Ant problem.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by