UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Assessment of cortical reorganisation for hand function after stroke.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Ward N
  • Publication date:
    01/12/2011
  • Pagination:
    5625, 5632
  • Journal:
    J Physiol
  • Volume:
    589
  • Issue:
    Pt 23
  • Status:
    Published
  • Country:
    England
  • PII:
    jphysiol.2011.220939
  • Language:
    eng
  • Keywords:
    Animals, Hand, Humans, Motor Cortex, Movement, Neuroimaging, Recovery of Function, Stroke
Abstract
Stroke often leads to impairment of hand function. Over the following months a variable amount of recovery can be seen. The evidence from animal and human studies suggests that reorganization rather than repair is the key. Surviving neural networks are important for recovery of function and non-invasive techniques such as functional magnetic resonance imaging allow us to study them in humans. For example, initial attempts to move a paretic limb following stroke are associated with widespread activity within the distributed motor system in both cerebral hemispheres, more so in patients with greater impairment. Disruption of activity in premotor areas using transcranial magnetic stimulation prior to movement can impair motor performance in stroke patients but not in controls suggesting that these new patterns of brain activity can support recovered function. In other words, this reorganisation is functionally relevant. More recently, research has been directed at understanding how surviving brain regions influence one another during movement. This opens the way for functional brain imaging to become a clinically useful tool in rehabilitation. Understanding the dynamic process of systems level reorganization will allow greater understanding of the mechanisms of recovery and potentially improve our ability to deliver effective restorative therapy.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Clinical and Movement Neurosciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by