UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Generalised Longitudinal Susceptibility for Magnetic Monopoles in Spin Ice
  • Publication Type:
    Journal article
  • Authors:
    Bramwell ST
  • Publication date:
    01/12/2011
  • Notes:
    29 pages, 4 figures; to be published in Phil. Trans A, special issue for Royal Society Theo Murphy Meeting on Magnetic Monopoles in Spin Ice (Nov. 2011, UK). Second version, significantly revised after helpful referee comments. Many typos corrected
Abstract
The generalised longitudinal susceptibility $\chi({\bf q}, \omega)$ affords a sensitive measure of the spatial and temporal correlations of magnetic monopoles in spin ice. Starting with the monopole model, a mean field expression for $\chi({\bf q}, \omega)$ is derived as well as expressions for the mean square longitudinal field and induction at a point. Monopole motion is shown to be strongly correlated, and both spatial and temporal correlations are controlled by the dimensionless monopole density $x$ which defines the ratio of the magnetization relaxation rate and the monopole hop rate. Thermal effects and spin lattice relaxation are also considered. The derived equations are applicable in the temperature range where the Wien effect for magnetic monopoles is negligible. They are discussed in the context of existing theories of spin ice and the following experimental techniques: dc and ac-magnetization, neutron scattering, neutron spin echo, and longitudinal and transverse field $\mu$SR. The monopole theory is found to unify diverse experimental results, but several discrepancies between theory and experiment are identified. One of these, concerning the neutron scattering line shape, is explained by means of a phenomenological modification to the theory.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
Dept of Physics & Astronomy
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by