Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Investigation on heavy crude-water two phase flow and related flow characteristics
In this paper, heavy crude oil-water flows are studied in a horizontal stainless steel test section with 25.4. mm ID and overall length of 50 m. Crude oil (viscosity = 628.1. mPa. s, interfacial tension with water = 10.33 mN/m at 60. °C) and water, collected from an oilfield, were used as test fluids. Visual observations, local sampling and pressure drop measurements were used to identify the flow patterns and their transitions. It was found that in all conditions studied there was a water-in-oil emulsion present. At low mixture velocities and water fractions this occupied the whole pipe cross section. As the velocity or the volume fraction increased water appeared to segregate. At high water fractions and mixture velocities annular flow appeared with the water-in-oil emulsion in the core surrounded by a water layer. The results were compared with those from a model oil with the same viscosity. At low water fractions there was a similarity between the patterns observed with the two oil systems characterized by water segregation from an oil continuous dispersion with increasing water fraction or mixture velocity. However, at high water fractions an oil-in-water dispersion formed with the model oil that was not seen with the crude oil. Pressure drop was generally higher for the crude oil system compared to the model one, while in both cases it decreased when water started to segregate and form layers in contact with the pipe wall. The differences between the two oil systems are attributed to the natural surfactants present in the heavy crude oil (such as asphaltenes and resins), which tend to accumulate on the water/oil interface, retard film drainage and maintain the stability of water drops in oil. © 2011 Elsevier Ltd.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Chemical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by