UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Exploiting hierarchy in structural brain networks
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Conference Proceeding
  • Authors:
    Deligianni F, Robinson E, Sharp D, Edwards AD, Rueckert D, Alexander DC
  • Publication date:
    02/11/2011
  • Pagination:
    871, 874
  • Journal:
    Proceedings - International Symposium on Biomedical Imaging
  • Status:
    Published
  • Print ISSN:
    1945-7928
Abstract
Whole-brain structural connectivity matrices extracted from Diffusion Weighted Images (DWI) provide a systematic way of representing anatomical brain networks. They are equivalent to weighted graphs that encode both the topology of the network as well as the strength of connection between each pair of region of interest (ROIs). Here, we exploit their hierarchical organization to infer probability of connection between pairs of ROIs. Firstly, we extract hierarchical graphs that best fit the data and we sample across them with a Markov Chain Monte Carlo (MCMC) algorithm to produce a consensus probability map of whether or not there is a connection. We apply our technique in a gender classification paradigm and we explore its effectiveness under different parcellation scenarios. Our results demonstrate that the proposed methodology improves classification when connectivity matrices are based on parcellations that do not confound their hierarchical structure. © 2011 IEEE.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by