UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Zeolite-modified WO3 gas sensors - Enhanced detection of NO 2
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Varsani P, Afonja A, Williams DE, Parkin IP, Binions R
  • Publication date:
    15/12/2011
  • Pagination:
    475, 482
  • Journal:
    Sensors and Actuators, B: Chemical
  • Volume:
    160
  • Issue:
    1
  • Print ISSN:
    0925-4005
  • PII:
    S0925400511007374
  • Language:
    eng
  • Keywords:
    Chemical sensor, Environmental monitoring, Tungsten oxide, Zeolite
Abstract
Solid-state metal oxide gas sensors with zeolite overlayers have been developed as a means to improve sensor selectivity. Screen printed tungsten oxide (WO3) sensors were modified by the addition of acidic and catalytic zeolite layers. The sensors were characterised before and after sensing experiments using X-ray diffraction, energy dispersive X-ray analysis and scanning electron microscopy. The sensors were tested against various gases and gas mixtures to assess their discriminatory behaviour. The results show that the sensors response can be tailored to be selective towards specific target gases by changing the zeolite; for example the H-ZSM-5 sensor gave a response 19 times greater to NO2 than an unmodified control sensor. It was observed that the WO3 based gas sensors showed a remarkable selectivity towards NO2 in a gas mixture. The sensors also showed high levels of stability and sensitivity and have potential to be used in electronic nose technology. © 2011 Elsevier B.V. All rights reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Chemistry
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by