Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Young JR, Geisen M, Probert I
  • Publication date:
  • Pagination:
    267, 288
  • Journal:
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
To help understand potential biases in coccolithophore paleo-biodiversity estimates various aspects of their biology are reviewed based on the recent monographic guide to extant coccolithophore taxonomy and research developed within the CODENET project. The evidence for life-cycles in coccolithophores involving two biomineralized phases is reviewed in detail, and it is shown that these are likely to have been pervasive through the fossil record of coccolithophores. The extent of polymorphism in extant coccolithophores is reviewed and a surprisingly strong correlation with phylogeny is documented, in particular it is shown that there is a very strong correlation between polymorphism in heterococcolith and holococcolith-bearing phases. Recent documentation of (pseudo)cryptic speciation in coccolithophores is discussed and it is argued that this provides considerable support for the rather fine morphological taxonomy adopted by nannofossil paleontologists, but also means that accurate recognition of species in the fossil record is an almost impossible goal. Finally the diversity of extant coccolithophores is compared with that recorded in Holocene sediments and it is shown that the majority of extant diversity is represented by small rare species with very low preservation potential. It is argued that this is the most serious potential biasing mechanism for study of paleobiodiversity changes since estimates of diversity at any time will be strongly influenced by the availability of well-preserved shelf sediments and of the intensity of their study by electron microscopy. Moreover, secular changes in coccolith size in relation to environmental change could significantly affect the preserved diversity of coccolithophores.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by