Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A noninvasive rf probe for the study of ionization and dissociation processes in technological plasmas
A swept frequency absorbance plasma diagnostic technique for measurement of self-resonance frequency, intrinsic plasma-tool distributed capacitance, radiative energy loss, and effective plasma capacitance is described. The ex situ probe measures the plasma properties independently of all contributions from the plasma-tool and transmission line connection to the rf supply. The technique employs a swept frequency source and a balanced equal ratio arm bridge to measure the frequency response of the plasma tool after the plasma has been extinguished under plasma conjugate matching conditions. The resonant frequency of the combination of capacitances due to plasma-tool geometry (intrinsic capacitance, Ci) and the matching network (Cm) exhibits a shift from the excitation frequency (13.56 MHz) that is dependent on the effective plasma capacitance. Resonance frequency shift data are given for He, Ne, Ar, O2, N2, and N2O as a function of both pressure (0.02–0.8 mbar) and incident power (50 and 100 W). This technique allows the differentiation between dissociation and ionization processes within the plasma through a simple noninvasive rf measurement.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Electronic & Electrical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by