UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Histone H3 lysine 14 acetylation is required for activation of a DNA damage checkpoint in fission yeast.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Wang Y, Kallgren SP, Reddy BD, Kuntz K, López-Maury L, Thompson J, Watt S, Ma C, Hou H, Shi Y, Yates JR, Bähler J, O'Connell MJ, Jia S
  • Publication date:
    03/02/2012
  • Pagination:
    4386, 4393
  • Journal:
    J Biol Chem
  • Volume:
    287
  • Issue:
    6
  • Status:
    Published
  • Country:
    United States
  • PII:
    M111.329417
  • Language:
    eng
  • Keywords:
    Acetylation, Acetyltransferases, Chromatin, DNA Damage, DNA, Fungal, Histones, Mutation, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Abstract
Histone lysine acetylation has emerged as a key regulator of genome organization. However, with a few exceptions, the contribution of each acetylated lysine to cellular functions is not well understood because of the limited specificity of most histone acetyltransferases and histone deacetylases. Here we show that the Mst2 complex in Schizosaccharomyces pombe is a highly specific H3 lysine 14 (H3K14) acetyltransferase that functions together with Gcn5 to regulate global levels of H3K14 acetylation (H3K14ac). By analyzing the effect of H3K14ac loss through both enzymatic inactivation and histone mutations, we found that H3K14ac is critical for DNA damage checkpoint activation by directly regulating the compaction of chromatin and by recruiting chromatin remodeling protein complex RSC.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Genetics, Evolution & Environment
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by