Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Microstructure-based intensification of a falling film microreactor through optimal film setting with realistic profiles and in-channel induced mixing
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Al-Rawashdeh M, Cantu-Perez A, Ziegenbalg D, Löb P, Gavriilidis A, Hessel V, Schönfeld F
  • Publication date:
  • Pagination:
    318, 329
  • Journal:
    Chemical Engineering Journal
  • Volume:
  • Status:
  • Print ISSN:
The high liquid based specific interfacial area, up to ∼20,000m 2 /m 3 , of falling film microreactors renders them to be ideally suited to carry out fast exothermic and mass transfer limited reactions. To understand the role of and control this interfacial area, it is important to account for realistic liquid film profiles. Here, we vary the liquid film profile or its velocity profile by two different means - through the (external) shape of a plain microchannel and through in-channel structures within the microchannel (staggered herringbone grooves (SHG) on the microchannel bottom). The variations in the liquid films are evaluated via two computational fluid dynamic (CFD) models. First is the pseudo 3-D which explicitly accounts for the liquid film thicknesses, flow velocities, species transport and reactions. Here, the pseudo 3-D mod el is used to investigate (1) the effects of five microchannel shapes and (2) three microchannel cross section dimensions; to account for a scale-out through both numbering-up and smart increase in dimensions. The model reaction used is the absorption of CO 2 in aqueous NaOH solution. It is found that the mass transfer into the liquid and the reaction conversion depend on the velocity profile and flow pattern. Second CFD model is the full 3-D which is used to evaluate the liquid film in the presence of SHG. The simulations from the full 3-D model indicate that: (1) residence time distribution is narrowed by five times compared to plain microchannels and (2) the penetration depths of particles seeded at the gas/liquid interface are 1.7 times larger in the presence of SHG. Furthermore the effect of SHG on penetration depth is more pronounced at higher flow rates. This is experimentally exploited by increasing the liquid throughput by more than a factor of two while keeping the same reaction conversion, using the SHG microchannels. © 2011 Elsevier B.V.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Chemical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by