Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Monsoon control over erosion patterns in the western Himalaya: Possible feed-back into the tectonic evolution
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Clift PD, Giosan L, Carter A, Garzanti E, Galy V, Tabrez AR, Pringle M, Campbell IH, France-Lanord C, Blusztajn J, Allen C, Alizai A, Lückge A, Danish M, Rabbani MM
  • Publication date:
  • Pagination:
    185, 218
  • Journal:
    Geological Society Special Publication
  • Volume:
  • Status:
  • Print ISSN:
The Indus Delta is constructed of sediment eroded from the western Himalaya and since 20 ka has been subjected to strong variations in monsoon intensity. Provenance changes rapidly at 12-8 ka, although bulk and heavy mineral content remains relatively unchanged. Bulk sediment analyses shows more negative εNd and higher 87Sr/86Sr values, peaking around 8-9 ka. Apatite fission track ages and biotite Ar-Ar ages show younger grains ages at 8-9 ka compared to at the Last Glacial Maximum (LGM). At the same time δ13C climbs from -23 to -20‰, suggestive of a shift from terrestrial to more marine organic carbon as Early Holocene sea level rose. U-Pb zircon ages suggest enhanced erosion of the Lesser Himalaya and a relative reduction in erosion from the Transhimalaya and Karakoram since the LGM. The shift in erosion to the south correlates with those regions now affected by the heaviest summer monsoon rains. The focused erosion along the southern edge of Tibet required by current tectonic models for the Greater Himalaya would be impossible to achieve without a strong summer monsoon. Our work supports the idea that although long-term monsoon strengthening is caused by uplift of the Tibetan Plateau, monsoon-driven erosion controls Himalayan tectonic evolution. © The Geological Society of London 2010.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by