UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Forecasting foreign exchange rates using kernel methods
Abstract
First, the all-important no free lunch theorems are introduced. Next, kernel methods, support vector machines (SVMs), preprocessing, model selection, feature selection, SVM software and the Fisher kernel are introduced and discussed. A hidden Markov model is trained on foreign exchange data to derive a Fisher kernel for an SVM, the DC algorithm and the Bayes point machine (BPM) are also used to learn the kernel on foreign exchange data. Further, the DC algorithm was used to learn the parameters of the hidden Markov model in the Fisher kernel, creating a hybrid algorithm. The mean net returns were positive for BPM; and BPM, the Fisher kernel, the DC algorithm and the hybrid algorithm were all improvements over a standard SVM in terms of both gross returns and net returns, but none achieved net returns as high as the genetic programming approach employed by Neely, Weller, and Dittmar (1997) and published in Neely, Weller, and Ulrich (2009). Two implementations of SVMs for Windows with semi-automated parameter selection are built. © 2012 Elsevier Ltd. All rights reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by