Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Constraining the uncertainty in fracture geometry using tracer tests
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Johnston PB, Atkinson T, Barker J, Odling N
  • Publication date:
  • Pagination:
    527, 539
  • Journal:
    Hydrogeology Journal
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
In fractured-rock aquifers, the geometric and hydraulic properties of the fractures commonly have a dominant influence on transport. Tracer tests are often used to estimate directly the gross transport properties of a fractured rock mass. The prospects for understanding characteristics of the heterogeneities in a fractured porous medium were explored from evidence provided by tracer experiments. The approach was to simulate flow and transport on a large set of prescribed fracture networks in a two-dimensional homogeneous permeable medium, thus generating synthetic tracer test data. The fracture orientation, aperture, spacing and network geometry were systematically altered from one case to the next. A classification scheme was devised for the tracer breakthrough curves using principal component analysis and this classification was linked to the fracture pattern properties. Even under highly simplified and controlled conditions, quite different fracture patterns can produce very similar breakthrough curves. The classification scheme thus demonstrates that a single breakthrough curve cannot reveal the fracture geometry with any precision. However, the scheme provided a methodology for rejecting geometric properties that do not belong to the fracture pattern under investigation, thus reducing the uncertainty in fracture geometry. © Springer-Verlag 2008.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by