UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Topological Sector Fluctuations and Curie Law Crossover in Spin Ice
Abstract
At low temperatures, a spin ice enters a Coulomb phase - a state with algebraic correlations and topologically constrained spin configurations. In Ho2Ti2O7, we have observed experimentally that this process is accompanied by a non-standard temperature evolution of the wave vector dependent magnetic susceptibility, as measured by neutron scattering. Analytical and numerical approaches reveal signatures of a crossover between two Curie laws, one characterizing the high temperature paramagnetic regime, and the other the low temperature topologically constrained regime, which we call the spin liquid Curie law. The theory is shown to be in excellent agreement with neutron scattering experiments. On a more general footing, i) the existence of two Curie laws appears to be a general property of the emergent gauge field for a classical spin liquid, and ii) sheds light on the experimental difficulty of measuring a precise Curie-Weiss temperature in frustrated materials; iii) the mapping between gauge and spin degrees of freedom means that the susceptibility at finite wave vector can be used as a local probe of fluctuations among topological sectors.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
Dept of Physics & Astronomy
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by