Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Assessment of density functional theory for iron(II) molecules across the spin-crossover transition
Octahedral Fe$^{2+}$ molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of the various possible spin-states has not been identified yet. Here we critically discuss the issues related to the theoretical description of this class of molecules from first principles. In particular we present a comparison between different density functionals for four ions, namely [Fe(H$_2$O)$_6$]$^{2+}$, [Fe(NH$_3$)$_6$]$^{2+}$, [Fe(NCH)$_6$]$^{2+}$ and [Fe(CO)$_6$]$^{2+}$. These are characterized by different ligand-field splittings and ground state spin multiplicities. Since no experimental data are available for the gas phase, the density functional theory results are benchmarked against those obtained with diffusion Monte Carlo, one of the most accurate methods available to compute ground state total energies of quantum systems. On the one hand, we show that most of the functionals considered provide a good description of the geometry and of the shape of the potential energy surfaces. On the other hand, the same functionals fail badly in predicting the energy differences between the various spin states. In the case of [Fe(H$_2$O)$_6$]$^{2+}$, [Fe(NH$_3$)$_6$]$^{2+}$, [Fe(NCH)$_6$]$^{2+}$, this failure is related to the drastic underestimation of the exchange energy. Therefore quite accurate results can be achieved with hybrid functionals including about 50% of Hartree-Fock exchange. In contrast, in the case of [Fe(CO)$_6$]$^{2+}$, the failure is likely to be caused by the multiconfigurational character of the ground state wave-function and no suitable exchange and correlation functional has been identified.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by