UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Axon diameter mapping in the presence of orientation dispersion with diffusion MRI.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Zhang H, Hubbard PL, Parker GJM, Alexander DC
  • Publication date:
    01/06/2011
  • Pagination:
    1301, 1315
  • Journal:
    Neuroimage
  • Volume:
    56
  • Issue:
    3
  • Status:
    Published
  • Country:
    United States
  • PII:
    S1053-8119(11)00137-6
  • Language:
    eng
  • Keywords:
    Adult, Algorithms, Anisotropy, Axons, Brain, Computer Simulation, Diffusion Magnetic Resonance Imaging, Female, Humans, Image Processing, Computer-Assisted, Male, Middle Aged, Models, Neurological
Abstract
Direct measurement of tissue microstructure with diffusion MRI offers a new class of markers, such as axon diameters, that give more specific information about tissue than measures derived from diffusion tensor imaging. The existing techniques of this kind assume a single axon orientation in the tissue model, which may be a reasonable approximation only for the most coherently oriented brain white matter, such as the corpus callosum. For most other areas, orientation dispersion is not negligible and, if unaccounted for, leads to overestimation of the axon diameters, prohibiting their accurate mapping over the whole brain. Here we propose a new model that captures the effect of orientation dispersion explicitly. A numerical scheme is developed to compute the diffusion signal prescribed by the proposed model efficiently, which supports the simultaneous estimation of the axon diameter and orientation dispersion. Synthetic data experiments demonstrate that the new model provides an axon diameter index that is robust to the presence of orientation dispersion. Results on in vivo human data show reduced axon diameter index and better agreement with histology compared to previous methods suggesting improvements in the axon diameter estimate.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by