Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
PDGF and intracellular signaling in the timing of oligodendrocyte differentiation
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Hart IK, Richardson WD, Bolsover SR, Raff MC
  • Publication date:
  • Pagination:
    3411, 3417
  • Journal:
    Journal of Cell Biology
  • Volume:
  • Issue:
    6 II
  • Status:
  • Print ISSN:
In the rat optic nerve, bipotential O-2A progenitor cells give rise to oligodendrocytes and type 2 astrocytes on a precise schedule. Previous studies suggest that PDGF plays an important part in timing oligodendrocyte development by stimulating O-2A progenitor cells to proliferate until they become mitotically unresponsive to PDGF, stop dividing, and differentiate automatically into oligodendrocytes. Since the loss of mitotic responsiveness to PDGF has been shown not to be due to a loss of PDGF receptors, we have now examined the possibility that the unresponsiveness results from an uncoupling of these receptors from early intracellular signaling pathways. We show that (a) although PDGF does not stimulate newly formed oligodendrocytes to synthesize DNA, it induces an increase in cytosolic Ca2+ in these cells; (b) a combination of a Ca2+ ionophore plus a phorbol ester mimics the effect of PDGF, both in stimulating O-2A progenitor cell division and in reconstituting the normal timing of oligodendrocyte differentiation in culture; and (c) he same combination of drugs does not stimulate newly formed oligodendrocytes to proliferate, even in the presence of PDGF or dibutyryl cAMP. The most parsimonious explanation for these results is that O-2A progenitor cells become mitotically unresponsive to PDGF because the intracellular signaling pathways from thew PDGF receptor to the nucleus are blocked downstream from the receptor and some of the early events that are triggered by receptor activation.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Cell & Developmental Biology
Div of Biosciences
Wolfson Inst for Biomedical Research
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by