UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Building complex networks with Platonic solids.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Song W-M, Di Matteo T, Aste T
  • Publication date:
    04/2012
  • Pagination:
    046115, ?
  • Journal:
    Phys Rev E Stat Nonlin Soft Matter Phys
  • Volume:
    85
  • Issue:
    4 Pt 2
  • Status:
    Published
  • Country:
    United States
  • Language:
    eng
  • Keywords:
    Algorithms, Biophysics, Cluster Analysis, Fractals, Internet, Models, Molecular, Models, Statistical, Models, Theoretical, Molecular Conformation, Particle Size, Physics, Probability
Abstract
We propose a unified model to build planar graphs with diverse topological characteristics which are of relevance in real applications. Here convex regular polyhedra (Platonic solids) are used as the building blocks for the construction of a variety of complex planar networks. These networks are obtained by merging polyhedra face by face on a tree-structure leading to planar graphs. We investigate two different constructions: (1) a fully deterministic construction where a self-similar fractal structure is built by using a single kind of polyhedron which is iteratively attached to every face and (2) a stochastic construction where at each step a polyhedron is attached to a randomly chosen face. These networks are scale-free, small-world, clustered, and sparse, sharing several characteristics of real-world complex networks. We derive analytical expressions for the degree distribution, the clustering coefficient, and the mean degree of nearest neighbors showing that these networks have power-law degree distributions with tunable exponents associated with the building polyhedron, and they possess a hierarchical organization that is determined by planarity.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by