UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Deformation and failure of rectangular plates subjected to impulsive loadings
Abstract
The deformation and failure of fully-clamped rectangular plates subjected to zero-period, uniform-momentum impulsive loads are studied. Analytical predictions are given for the critical velocities corresponding to the transition between deformation modes. Three-dimensional (3D) numerical analyses were performed using the non-linear finite element (FE) code ABAQUS/Explicit to predict the maximum central deflection and deformation mode of rectangular plates for different combinations of aspect ratios and impulses. Two competing mechanisms of bulk material failure, viz. by the nucleation, coalescence and growth of voids and by shear band localisation, are implemented in the FE model to simulate tensile tearing, resulting in progressive ductile fracture, at the support. The numerical results are validated against experimental data for square mild-steel and aluminium plates where they are found to be in good agreement. Deformation maps delineating the different deformation régimes for different combinations of blast impulse and aspect ratio are constructed for plates of equal mass. The effects of imposing a finite-period, as opposed to a zero-period, impulsive load upon the deformation mode and maximum deflection are also discussed. © 2013 Elsevier Ltd. All rights reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
Dept of Mechanical Engineering
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by