UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
The lithospheric mantle and lower crust-mantle relationships under Scotland: A xenolithic perspective
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Upton BGJ, Downes H, Kirstein LA, Bonadiman C, Hill PG, Ntaflos T
  • Publication date:
    01/07/2011
  • Pagination:
    873, 886
  • Journal:
    Journal of the Geological Society
  • Volume:
    168
  • Issue:
    4
  • Status:
    Published
  • Print ISSN:
    0016-7649
Abstract
In the British Isles the majority of volcanic rocks containing upper mantle and lower crustal xenoliths occur in Scotland. Most of the occurrences are of Carboniferous-Permian age. This paper presents new data on the mineral chemistry of spinel lherzolite xenoliths from the five principal Scottish tectonic terranes. Compositional variations among the minerals emphasize the broad lateral heterogeneity of the subcontinental lithospheric mantle across the region. The remarkable range of Al2O3 v. CaO exhibited by the clinopyroxenes compared with data from other 'xenolith provinces' emphasizes the extremely complex tectonomagmatic history of the Scottish lithosphere. The generalized age increase from southern and central Scotland to the Northern Highland and Hebridean terranes of the north and NW, with concomitant complexity of geological history, is reflected also by trace element and isotopic studies. Reaction relationships in lherzolites from the Hebridean Terrane, owing to pervasive metasomatism, involve secondary growth of sodic feldspar. This, and light REE enrichment of clinopyroxenes, points to involvement of a natro-carbonatitic melt. Most pyroxenitic xenoliths are inferred to form a basal crustal layer with a generally sharp discontinuity above the underlying (dominantly lherzolitic) mantle. A second discontinuity is inferred to separate these ultramafic cumulates from overlying, broadly cognate metagabbroic cumulates. © The Geological Society of London.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by