Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A chemostratigraphic investigation of the prehistoric Vavalaci lava sequence on Mount Etna: Simulating borehole drilling
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Spence A, Downes H
  • Publication date:
  • Pagination:
    423, 433
  • Journal:
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
Scientific drilling of volcanic successions has been suggested as a way of establishing stratigraphic sequences of unexposed lava flows on large complex volcanoes, with the aim of in-depth study of magmatic processes and source geochemistry of otherwise inaccessible lava sequences. To simulate the core drilling of such sequences, lava flows from the prehistoric Vavalaci Centre exposed in the south wall of the Valle del Bove, Mount Etna, Sicily, were sampled in four stratigraphic sections.The fresh, generally strongly porphyritic Na-alkaline trachybasalts and trachyandesites show diverging sub-parallel trends of high- and low-alkali concentrations in total alkali versus silica (TAS) diagrams, whilst variations of other major and trace elements reveal two further distinct chemical groups enriched in K, REE and Ti which follow separate fractionation paths. A set of control samples was used to establish geochemical variations within a single lava flow. Primitive mantle normalised incompatible element patterns demonstrate that the lavas have highly enriched OIB signatures with a clear division in LREE, Ba, Th, Nb and Zr concentrations between the four different chemical groups. Comparison of data for the Vavalaci lavas with the compositions of other prehistoric, historic and recent eruptions of Mt. Etna indicates a temporal trend towards more basic magma compositions.The chemostratigraphy of the lavas was statistically analysed to give correlations between flows from different sections. Whilst a good number of geologically meaningful correlations were revealed, we can demonstrate that only one set of lavas was actually sampled in all four sections, whilst a number of unique lavas remain uncorrelated. Thus no individual section, or simulated borehole core, provided samples of the complete lava flow sequence without significant gaps in the stratigraphy. The trends in lava compositions are also defined in the stratigraphy, showing their evolution from low- to high-alkali lavas through the series, which may be related to temporal decrease in degree of partial melting of the mantle rather than through simple fractionation processes or mixing of magmas. © 2011 Elsevier B.V.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by