UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Petrology and geodynamical interpretation of mantle xenoliths from Late Cretaceous lamprophyres, Villány Mts (S Hungary)
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Nédli Z, M. Tóth T, Downes H, Császár G, Beard A, Szabó C
  • Publication date:
    01/06/2010
  • Pagination:
    43, 54
  • Journal:
    Tectonophysics
  • Volume:
    489
  • Issue:
    1-4
  • Status:
    Published
  • Print ISSN:
    0040-1951
Abstract
A Late Cretaceous lamprophyre dyke in the Villány Mts (S Hungary), situated in the Tisza unit, contains abundant spinel lherzolite xenoliths with porphyroclastic textures. Mineral chemistry suggests a relatively fertile mantle, which experienced only 5-7% melt extraction. Differences in porphyroclast and neoblast chemistry and thermobarometric calculations suggest that the mantle section represented by the xenoliths experienced recrystallization at lower PT as it was transported to shallow mantle depths close to the plagioclase stability field, followed by later relaxation. Based on volcanological and sedimentological constraints from the Villány Mts and the neighboring Mecsek Mts, we suggest that the uprise of the subcontinental mantle material was related to a Cretaceous rifting event and lithospheric deformation of the southwestern part of the Tisza unit. Mantle upwelling and formation of lamprophyre melts can be related to generation or reactivation of deep fractures of the lithosphere, during a period of lithospheric extension between the major nappe emplacements (Albian-Cenomanian and Paleocene) of the region. © 2010 Elsevier B.V.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by