Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Evidence from polymict ureilite meteorites for a disrupted and re-accreted single ureilite parent asteroid gardened by several distinct impactors
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Downes H, Mittlefehldt DW, Kita NT, Valley JW
  • Publication date:
  • Pagination:
    4825, 4844
  • Journal:
    Geochimica et Cosmochimica Acta
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
Ureilites are ultramafic achondrites that exhibit heterogeneity in mg# and oxygen isotope ratios between different meteorites. Polymict ureilites represent near-surface material of the ureilite parent asteroid(s). Electron microprobe analyses of >500 olivine and pyroxene clasts in several polymict ureilites reveal a statistically identical range of compositions to that shown by unbrecciated ureilites, suggesting derivation from a single parent asteroid. Many ureilitic clasts have identical compositions to the anomalously high Mn/Mg olivines and pyroxenes from the Hughes 009 unbrecciated ureilite (here termed the "Hughes cluster"). Some polymict samples also contain lithic clasts derived from oxidized impactors. The presence of several common distinctive lithologies within polymict ureilites is additional evidence that ureilites were derived from a single parent asteroid. In situ oxygen three isotope analyses were made on individual ureilite minerals and lithic clasts, using a secondary ion mass spectrometer (SIMS) with precision typically better than 0.2-0.4‰ (2SD) for δ18O and δ17O. Oxygen isotope ratios of ureilitic clasts fall on a narrow trend along the CCAM line, covering the range for unbrecciated ureilites, and show a good anti-correlation with mineral mg#. SIMS analysis identifies one ferroan lithic clast as an R-chondrite, while a second ferroan clast is unlike any known meteorite. An exotic enstatite grain is derived from an enstatite chondrite or aubrite, and another pyroxene grain with Δ17O of -0.4 ± 0.2‰ is unrelated to any known meteorite type. Ureilitic olivine clasts with mg#s < 85 are much more common than those with mg# > 85 which include the melt-inclusion-bearing "Hughes cluster" ureilites. Thus melt was present in regions of the parent ureilite asteroid with a bulk mg# > 85 when the asteroid was disrupted by impact, giving rise to two types of ureilites: common ferroan ones that were residual after melting and less common magnesian ones that were still partially molten when disruption occurred. One or more daughter asteroids re-accreted from the remnants of the mantle of the proto-ureilite asteroid. Polymict ureilite meteorites represent regolith that subsequently formed on the surface of a daughter asteroid, including impact-derived material from at least six different meteoritic sources. © 2008 Elsevier Ltd.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by