UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R, Ravenscroft P, Cronin A, Howarth RJ, Chatterjee A, Talukder T, Lowry D, Houghton S, Chadha DK
  • Publication date:
    08/2004
  • Pagination:
    1255, 1293
  • Journal:
    Applied Geochemistry
  • Volume:
    19
  • Issue:
    8
  • Print ISSN:
    0883-2927
  • Keywords:
    arsenic, west bengal, ground water
  • Notes:
    Imported via OAI, 16:54:26 4th May 2005
Abstract
In order to investigate the mechanism of As release to anoxic ground water in alluvial aquifers, the authors sampled ground waters from 3 piezometer nests, 79 shallow (<45 m) wells, and 6 deep (>80 m) wells, in an area 750 m by 450 m, just north of Barasat, near Kolkata (Calcutta), in southern West Bengal. High concentrations of As (200?1180 g L?1) are accompanied by high concentrations of Fe (3?13.7 mg L?1) and PO4 (1?6.5 mg L?1). Ground water that is rich in Mn (1?5.3 mg L?1) contains <50 g L?1 of As. The composition of shallow ground water varies at the 100-m scale laterally and the metre-scale vertically, with vertical gradients in As concentration reaching 200 g L?1 m?1. The As is supplied by reductive dissolution of FeOOH and release of the sorbed As to solution. The process is driven by natural organic matter in peaty strata both within the aquifer sands and in the overlying confining unit. In well waters, thermo-tolerant coliforms, a proxy for faecal contamination, are not present in high numbers (<10 cfu/100 ml in 85% of wells) showing that faecally-derived organic matter does not enter the aquifer, does not drive reduction of FeOOH, and so does not release As to ground water. Arsenic concentrations are high (>>50 g L?1) where reduction of FeOOH is complete and its entire load of sorbed As is released to solution, at which point the aquifer sediments become grey in colour as FeOOH vanishes. Where reduction is incomplete, the sediments are brown in colour and resorption of As to residual FeOOH keeps As concentrations below 10 g L?1 in the presence of dissolved Fe. Sorbed As released by reduction of Mn oxides does not increase As in ground water because the As resorbs to FeOOH. High concentrations of As are common in alluvial aquifers of the Bengal Basin arise because Himalayan erosion supplies immature sediments, with low surface-loadings of FeOOH on mineral grains, to a depositional environment that is rich in organic mater so that complete reduction of FeOOH is common.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Earth Sciences
Author
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by