Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Definition of Late Cretaceous stage boundaries in Antarctica using strontium isotope stratigraphy
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    McArthur JM, Crame A, Thirwall MF
  • Publication date:
  • Pagination:
    623, 640
  • Journal:
    Journal of Geology
  • Volume:
  • Issue:
  • Print ISSN:
  • Notes:
    Imported via OAI, 7:29:01 14th May 2005
New 87Sr/86Sr analyses of macrofossils from 13 key marker horizons on James Ross and Vega Islands, Antarctica, allow the integration of the Antarctic Late Cretaceous succession into the standard biostratigraphic zonation schemes of the Northern Hemisphere. The 87Sr/86Sr data enable Late Cretaceous stage boundaries to be physically located with accuracy for the first time in a composite Southern Hemisphere reference section and so make the area one of global importance for documenting Late Cretaceous biotic evolution, particularly radiation and extinction events. The 87Sr/86Sr values allow the stage boundaries of the Turonian/Coniacian, Coniacian/Santonian, Santonian/Campanian, and Campanian/Maastrichtian, as well as other levels, to be correlated with both the United Kingdom and United States. These correlations show that current stratigraphic ages in Antarctica are too young by as much as a stage. Immediate implications of our new ages include the fact that Inoceramus madagascariensis, a useful fossil for regional austral correlation, is shown to be Turonian (probably Late Turonian) in age; the "Mytiloides" africanus species complex is exclusively Late Coniacian in age; both Baculites bailyi and Inoceramus cf. expansus have a Late Coniacian/Early Santonian age range; an important heteromorph ammonite assemblage comprising species of Eubostrychoceras, Pseudoxybeloceras, Ainoceras, and Ryugasella is confirmed as ranging from latest Coniacian to very earliest Campanian. An important new early angiosperm flora is shown to be unequivocally Coniacian in age. Our strontium isotopic recalibration of ages strengthens the suggestion that inoceramid bivalves became extinct at southern high latitudes much earlier than they did in the Northern Hemisphere and provides confirmation that, in Antarctica, belemnites did not persist beyond the Early Maastrichtian.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by