UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Parker GJM, Alexander DC
  • Publication date:
    05/2005
  • Pagination:
    893, 902
  • Journal:
    Philosophical Transactions of the Royal Society B: Biological Sciences
  • Volume:
    360
  • Issue:
    1457
  • Print ISSN:
    0962-8436
  • Notes:
    Imported via OAI, 7:29:01 9th Jul 2005
Abstract
Recently developed methods to extract the persistent angular structure (PAS) of axonal fibre bundles from diffusion-weighted magnetic resonance imaging (MRI) data are applied to drive probabilistic fibre tracking, designed to provide estimates of anatomical cerebral connectivity. The behaviour of the PAS function in the presence of realistic data noise is modelled for a range of single and multiple fibre configurations. This allows probability density functions (PDFs) to be generated that are parametrized according to the anisotropy of individual fibre populations. The PDFs are incorporated in a probabilistic fibre-tracking method to allow the estimation of whole-brain maps of anatomical connection probability. These methods are applied in two exemplar experiments in the corticospinal tract to show that it is possible to connect the entire primary motor cortex (M1) when tracing from the cerebral peduncles, and that the reverse experiment of tracking from M1 successfully identifies high probability connection via the pyramidal tracts. Using the extracted PAS in probabilistic fibre tracking allows higher specificity and sensitivity than previously reported fibre tracking using diffusion-weighted MRI in the corticospinal tract.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by