Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
An activating mutation in the transmembrane domain of the granulocyte colony-stimulating factor receptor in patients with acute myeloid leukemia.
To date, constitutively activating point mutations reported in hematopoietic growth factor receptors in patients with acute myeloid leukemia (AML) have been restricted to receptors with intrinsic tyrosine kinase activity such as c-kit and FLT3. We describe here a Thr617Asn mutation in the transmembrane domain of the non-tyrosine kinase receptor for granulocyte colony-stimulating factor (G-CSF) in the blast cells of two out of 555 AML patients examined. The mutant receptor conferred growth factor independence on factor-dependent Ba/F3 cells. In the absence of ligand, immunoblotting showed weak phosphorylation of JAK2, STAT3, ERKs 1 and 2 and the receptor itself, and there was approximately 70% of maximal growth in a proliferation assay. All signals were significantly enhanced in the presence of G-CSF. Retroviral transduction of mutant receptor into primary hematopoietic CD34+ cells induced G-CSF independent myeloid differentiation as assessed by the development of neutrophils and surface expression of CD11b and CD14. These results confirm the importance of the transmembrane domain for receptor function and suggest that introduction of an asparagine residue can cause sufficient stabilization of helix-helix interactions in the absence of ligand to activate downstream signaling pathways involved in directing proliferation and differentiation.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Research Department of Haematology
Research Department of Haematology
Research Department of Haematology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by