UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Mitochondria and Ca2+ in cell physiology and pathophysiology
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Duchen MR
  • Publication date:
    2000
  • Pagination:
    339, 348
  • Journal:
    Cell Calcium
  • Volume:
    28
  • Issue:
    5
  • Print ISSN:
    0143-4160
  • Keywords:
    ATP, ATPase, calcium, cardiomyocytes, cell, Cell Death, channels, Cytosol, functional, glutamate, mammalian, Mitochondria, neuron, neurons, Oxidative Stress, Oxygen, Permeability, physiology
  • Addresses:
    Mitochondrial Biology Group and Life Sciences Imaging Consortium, Department of Physiology, University College London, Gower Street, London, WC1E 6BT, UK mduchen@uclacuk
Abstract
There is now a consensus that mitochondria take up and accumulate Ca(2+)during physiological [Ca(2+)](c)signalling. This contribution will consider some of the functional consequences of mitochondrial Ca(2+)uptake for cell physiology and pathophysiology. The ability to remove Ca(2+)from local cytosol enables mitochondria to regulate the [Ca(2+)] in microdomains close to IP3-sensitive Ca(2+)-release channels. The [Ca(2+)] sensitivity of these channels means that, by regulating local [Ca(2+)](c), mitochondrial Ca(2+)uptake modulates the rate and extent of propagation of [Ca(2+)](c)waves in a variety of cell types. The coincidence of mitochondrial Ca(2+)uptake with oxidative stress may open the mitochondrial permeability transition pore (mPTP). This is a catastrophic event for the cell that will initiate pathways to cell death either by necrotic or apoptotic pathways. A model is presented in which illumination of an intramitochondrial fluorophore is used to generate oxygen radical species within mitochondria. This causes mitochondrial Ca(2+)loading from SR and triggers mPTP opening. In cardiomyocytes, mPTP opening leads to ATP consumption by the mitochondrial ATPase and so results in ATP depletion, rigor and necrotic cell death. In central mammalian neurons exposed to glutamate, a cellular Ca(2+)overload coincident with NO production also causes loss of mitochondrial potential and cell death, but mPTP involvement has proven more difficult to demonstrate unequivocally
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Cell & Developmental Biology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by