UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Yuan W, Dong J, Shicheng W, Carter A
  • Publication date:
    01/10/2006
  • Pagination:
    847, 856
  • Journal:
    Journal of Asian Earth Sciences
  • Volume:
    27
  • Issue:
    6
  • Status:
    Published
  • Print ISSN:
    1367-9120
Abstract
Forty-one apatite fission track ages (AFT) were determined on samples collected along a N-S section of the eastern Kunlun Mountains across the Middle and South Kunlun Faults between Buqingshan and Dulan. Measured AFT ages lie between 25±2 and 130±10 Ma, and all are significantly younger than their host rock formation or sediment deposition ages. Modelling the AFT data identifies a two stage regional cooling history that spans the last 100 Myrs. The earliest cooling phase occurred between the late Jurassic and early Tertiary and involved a moderate level of cooling between 20 and 40 °C, equivalent to average exhumation rates of =15 m/Myr. The second phase of cooling took place from ∼20 Ma with cooling rates increasing tenfold. Average exhumation rates for this period are estimated to be in the range of ∼100-150 m/Myr. The first stage of protracted cooling is consistent with regional evidence from the Qiantang and Lhasa terrans where previous studies have noted low rates of denudation in relation to a back-arc extensional setting. The more recent acceleration in cooling seen in the Kunlun data coincides with an increase in sedimentation rates in the adjacent Qaidam Basin. This points to a phase of Neogene uplift and increased erosion of the Kunlun Range, although contemporaneous monsoon strengthening may also have had a role. © 2006 Elsevier Ltd. All rights reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by