Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Enriching the environment of ╬▒CaMKIIT286A mutant mice reveals that LTD occurs in memory processing but must be subsequently reversed by LTP
  • Publication Type:
    Journal article
  • Publication Sub Type:
  • Authors:
    Parsley SL, Pilgram SM, Soto F, Giese KP, Edwards FA
  • Publisher:
    Cold Spring Harbor, NY
  • Publication date:
  • Pagination:
    75, 83
  • Journal:
    Learning and Memory
  • Volume:
  • Issue:
  • Print ISSN:
  • Keywords:
    LTP, learning, enriched environment, αCaMKII
  • Addresses:
    Dept Physiology, University College London
  • Notes:
    Under consideration after resubmission with minor changes.
alphaCaMKII(T286A) mutant mice lack long-term potentiation (LTP) in the hippocampal CA1 region and are impaired in spatial learning. In situ hybridization confirms that the mutant mice show the same developmental expression of alphaCaMKII as their wild-type littermates. A simple hypothesis would suggest that if LTP is a substrate for learning, then enriching the environment should cause learning-dependent changes in wild-type mice that have LTP. Such changes would not be seen in LTP-deficient alphaCaMKII(T286A) mutants. Excitatory synaptic currents in CA1 neurons, recorded with patch clamp in brain slices, revealed that enrichment induces an increase in glutamate release probability and a decreased miniature current amplitude. Confocal microscopy also showed dendritic spine density to be reduced. However, contrary to the hypothesis above, these enrichment-induced changes occur only in the mutant mice and are not detectable in wild-type littermates. We suggest that enrichment induces alphaCaMKII-independent changes in both wild-type and mutant mice. Such changes may be subsequently reversed in wild-type animals via alphaCaMKII-dependent mechanisms, such as LTP. Reversal of plasticity has long been hypothesized to be essential for the hippocampus to maintain its role in memory processing. The inability to reverse plasticity in alphaCaMKII(T286A) mutant mice would then result in impairment of spatial learning.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Neuro, Physiology & Pharmacology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by