Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Inhibition of the phosphatidylinositol 3-kinase/Akt pathway by inositol pentakisphosphate results in antiangiogenic and antitumor effects.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Maffucci T, Piccolo E, Cumashi A, Iezzi M, Riley AM, Saiardi A, Godage HY, Rossi C, Broggini M, Iacobelli S, Potter BV, Innocenti P, Falasca M
  • Publication date:
  • Pagination:
    8339, 8349
  • Journal:
    Cancer Res
  • Volume:
  • Issue:
  • Country:
    United States
  • Print ISSN:
  • PII:
  • Language:
  • Keywords:
    Angiogenesis Inhibitors, Animals, Antineoplastic Agents, Cell Growth Processes, Cell Line, Tumor, Cell Movement, Cells, Cultured, Collagen, Drug Combinations, Drug Interactions, Endothelial Cells, Female, Fibroblast Growth Factor 2, Humans, Inositol Phosphates, Laminin, Mice, Mice, Inbred BALB C, Ovarian Neoplasms, Phosphatidylinositol 3-Kinases, Phosphorylation, Proteoglycans, Proto-Oncogene Proteins c-akt, Xenograft Model Antitumor Assays
The purpose of this study was to investigate the antiangiogenic and in vivo properties of the recently identified phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor Inositol(1,3,4,5,6) pentakisphosphate [Ins(1,3,4,5,6)P5]. Because activation of the PI3K/Akt pathway is a crucial step in some of the events leading to angiogenesis, the effect of Ins(1,3,4,5,6)P5 on basic fibroblast growth factor (FGF-2)-induced Akt phosphorylation, cell survival, motility, and tubulogenesis in vitro was tested in human umbilical vein endothelial cells (HUVEC). The effect of Ins(1,3,4,5,6)P5 on FGF-2-induced angiogenesis in vivo was evaluated using s.c. implanted Matrigel in mice. In addition, the effect of Ins(1,3,4,5,6)P5 on growth of ovarian carcinoma SKOV-3 xenograft was tested. Here, we show that FGF-2 induces Akt phosphorylation in HUVEC resulting in antiapoptotic effect in serum-deprived cells and increase in cellular motility. Ins(1,3,4,5,6)P5 blocks FGF-2-mediated Akt phosphorylation and inhibits both survival and migration in HUVEC. Moreover, Ins(1,3,4,5,6)P5 inhibits the FGF-2-mediated capillary tube formation of HUVEC plated on Matrigel and the FGF-2-induced angiogenic reaction in BALB/c mice. Finally, Ins(1,3,4,5,6)P5 blocks the s.c. growth of SKOV-3 xenografted in nude mice to the same extent than cisplatin and it completely inhibits Akt phosphorylation in vivo. These data definitively identify the Akt inhibitor Ins(1,3,4,5,6)P5 as a specific antiangiogenic and antitumor factor. Inappropriate activation of the PI3K/Akt pathway has been linked to the development of several diseases, including cancer, making this pathway an attractive target for therapeutic strategies. In this respect, Ins(1,3,4,5,6)P5, a water-soluble, natural compound with specific proapoptotic and antiangiogenic properties, might result in successful anticancer therapeutic strategies.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
MRC/UCL Lab for Molecular Cell Bio
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by